Innovations in the Teaching of Analytical Chemistry: How they have evolved

Gary D. Christian Department of Chemistry University of Washington Seattle, WA 98195-1700 USA christian@chem.washington.edu

Workshop on the Contents and Perspectives of Analytical Chemistry in Spanish Universities

Alcalá de Henares, Spain, April 10, 2014

Sponsored by the Spanish Society for Analytical Chemistry

- 1. The importance of analytical chemistry
- 2. How it developed
- 3. The tools we use
- 4. The evolution of textbooks
- 5. What is taught and how it has changed
- 6. Some (new) ways we teach (How do we teach it?)
- 7. Teaching social responsibility in AC
- 8. Teaching resources in the analytical sciences

Why do we need analytical chemists?

Everything is made of chemicals

•We need to find information about them

Analytical chemists do this for us

Charles N. Reilley

"Analytical chemistry is what analytical chemists do"

(See R.W. Murray, Anal. Chem., 66, 682A (1994)

"Analytical chemistry provides the methods and tools needed for insight into our material world...for answering four basic questions about a material sample:

•What? (qualitative)
•Where? (spatial)
•How much? (quantitative)
•What arrangement, structure, or form? (speciation)

Federation of European Chemical Societies, Karl Cammann, Univ. Muenster, 1992 Fresenius' Z. Anal. Chem., 343 (1992) 812

FIRST JOINT MEETING

EDUCATION IN ANALYTICAL CHEMISTRY

14-15 September 2001

CÓRDOBA, Spain

Some Highlights

•5% of Western World's economy dependent on analyses

- •20% of European chemists work as analysts
- •50% of chemists use analytical methods or results
- •3-5 billion pieces of analytical data/year in EU
- 100,000 analytical publications worldwide/year

60% of all legislation requires scientific input

Analytical chemistry provides measurements, leading to knowledge

Knowledge is the basis of democratic governance

Therefore, analytical chemistry is indispensible to governing a modern society

Manfred Grasserbauer
 Director Joint Research
 Centre, European Commission

Some everyday tests that are important in our lives

Blood glucose – diabetics
Cholesterol levels
Vitamin content of foods
Pesticides in foods
Carbon monoxide in air
Auto emissions (CO, HC)

Water hardness (CaCO₃)
Nitrogen in fertilizer
Sulfur in coal
Carbon in steel
Gunshot residue (forensics)
Ilicit drugs (criminal, sports)
Rapid i.d. of toxic substances
Chemical warfare agents

- •Health (what is your cholesterol level?)
- •**Safety** (does your food have pesticides?)
- •**The environment** (what/who is polluting your water?)
- •Manufacturing (real-time analysis, feedback control)
- •Quality control (does the gasoline have the correct octane rating?)
- •Regulations (do you meet emission
- requirements?)
- •Economic competitiveness (increase
- yield, quality)
- Forensics (whose blood is it?)

How did analytical chemistry develop?

Perceived value of Au and Ag: First incentive to acquire analytical knowledge.

Controlling purity and preventing counterfeiting was important in ancient communities in Babylon, Egypt, and Greece.

Fire Assays

"And I will put this third into the fire, and refine them as one refines silver, and test them as gold is tested."

Zechariah 13:9; Revised Standard Version

Fire Assays

King of Babylon complains to Egyptian Pharoah Amenophis the IVth (1375-1350 BC):

"Your majesty did not look at the gold sent to me. After putting it in the furnace, this gold was less than its weight."

References to fire assay have been found on cuneiform tablets in the Babylonian language discovered in the Nile valley.

"There goes Archimedes with his confounded lever again." Chemical balance: Ascribed to the Gods in the earliest documents found

Proverbs 11:I: "A false balance is an abomination to the Lord, but a just weight is his delight"

Art and science of weighing known in Egypt ca. 3000 B.C.

So measurements have always been important for societies.

And ethics/social responsibility have been issues over the eons, and remain today.

More on this later.

Taiwan National Museum, Tapei

Han Dynasty 10 AD

First Wet Test

1st Century – Pliny the Elder (AD 23-79) Caius Plinius Secundus Roman author and philosopher Natural History encylcopedia

Adulteration of copper sulfate was quite profitable.

Copper sulfate adulterated with iron sulfate - turned papyrus paper soaked in extract of gall-nuts black.

Middle Ages (470-1470)

Alchemists – assembled knowledge that formed basis for quantitative analysis (3rd and 4th centuries)

Growth continued during the phlogiston era (to ~1700)

Robert Boyle (1627-1691)

1661: "The Sceptical Chymist"

Coined the term "analyst"

Antoine Lavoisier (1743-1794)

Antoine Lavoisier

The "father of quantitative analysis"

Used the balance for quantitative experiments on conservation of mass

Gravimetric and titrimetric methods

Earliest instruments (e.g. visual colorimeters)

Introduction of physical chemistry concepts

Alan Bard, Pittcon 2002

Gravimetric Analysis – 17th Century

Friedrich Hoffmann (1660-1742) (German physician-chemist)

Precipitated chlorides with silver nitrate and sulfates with lime

18th Century

Jons Jakob Berzelius (1779-1848)

-Introduced stoichiometric concepts

-Development of chemical microscopy, flame tests, bead tests, titrimetry

19th Century: Titrimetry

Robert Bunsen (1811-1899) Karl Friedrich Mohr (1806-1879)

Bunsen

Joseph Gay-Lussac (1778-1850) 1829: Ag assay < 0.05% relative accuracy and precision Designed the first burette Named the burette and pipette

What tools do we use?

Modern balances are electronic. They still compare one mass against another since they are calibrated with a known mass. Common balances are sensitive to 0.1 mg.

©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley) Fig. 2.1. Electronic analytical balance.

Fig. 25 .- Duboscq colorimeter (Pellin).

Duboscq colorimeter (1854)

Used for the determination of creatinine in urine (Folin)

Alan Bard, Pittcon 2002
The Beckman DU spectrophotometer, introduced in 1941

(I)}

Alan Bard, Pittcon 2002

The pull for the invention of the Beckman DU was the need to measure vitamin A in food

Alan J. Bard, Pittcon 2002

Beckman Model G pH Meter 1936

Arnold O. Beckman 1900-2004

These include software for recording retention time, taking peak areas, and calculating concentrations.

An autosampler is attached.

Fig. 20.2. Modern gas chromatography system.

©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)

Hundreds of compounds can be separated and measured by GC, with very small samples.

Capillary columns have particularly high resolution.

Fig. 20.3. Typical gas chromatogram of complex mixture using a capillary column ^{©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)} GC-MS is very powerful for positive identification.

Modern GC-MS systems are compact.

More on principles in next slides.

Fig. 20.8. Gas chromatography-mass spectrometry benchtop system.

©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)

Top: Total-ion current gas chromatogram of cocaine in urine sample.

Middle: Mass spectrum from peak at 11.5 min.

Bottom: Mass spectrum from GC peak of cocaine standard at 11.5 min.

Fig. 20.13. Confirmation of cocaine by GC-MS.

The evolution of textbooks

Karl F. Mohr (1808-1879): "Lehrbuche der chemisch-analytischen Titrimethode" 1855 and 1856 (two parts)

Proposed primary standards (oxalic acid for alkalimetry; ferrous ammonium sulfate for oxidimetry)

Used K₂CrO₄ indicator to improve Gay-Lussac's turbidity method for chloride

Developed pinch clamp with a buret tip.

Introduced back titrations, normal solutions

Karl Remigius Fresenius (1818-1897)

"Anleitung zur quantitativen chemischen Analyse," 1846, 6 editions

1904 translation by A. I. Cohen "Quantitative Chemical Analysis"

Founded Zeitschrift fur analytische Chemie 1862

Wilhelm Ostwald (1853-1932)

1894:

"Die wissenschaflichen Grundlagen der analytischem chemie"

"The scientific fundamentals of analytical chemistry"

Theoretical explanations of analytical phenomena, K_{eq}

"Analytical chemistry is doomed to continue occupying a position subordinate to other branches if analytical chemists do not stop teaching and practicing chemical analysis solely as an empirical technique and art"

Ostwald

1900-1939 period:

Gradual increase in emphasis on scientific approach vs. empirical approach.

E.g., formation and properties of precipitates (Kolthoff)

H. A. Laitinen *Talanta*, **36**, 1 (1989) Textbook archeology (Royce Murray)

1930-1950: Basic chemical reactivity and physical aspects of titrimetry and gravimetry (Kolthoff and Sandell)

1960's: Spectrophotometry, separations, electrochemistry, gravimetry decreased

Titrimetry constant over 40 years. But:

Quant. treatment of equilibria Reactivity Electrode potentials

(1894-1993)

Thulacet

I. M. Kolthoff and E. B. Sandell, 1936:

"Textbook of Quantitative Inorganic Analysis"

"There appears to be a tendency to exaggerate the significance of "theory" at the expense of practical work in chemical analyses."

Kolthoff and Sandell, 1936

"Theory guides, experiment decides."

I. M. Kolthoff

Boyle: "Theory must be supported by experiment" - 1661

Richard P. Feynman, 1918-1988

"The test of all knowledge is experiment"

1st ed. 1960 2nd ed. 1975

ABOUT THE AUTHORS

Herbert A. Laitinen received his Ph.D. from the University of Minnesota and taught at the University of Illinois from 1940-1974. He is currently Graduate Research Professor at the University of Florida, Gainesville and the editor of Analytical Chemistry.

Walter E. Harris has taught at the University of Alberta, Edmonton since 1946, where he is now Chairman of the Department of Chemistry. He is Editor-Analytical of the Canadian Journal of Chemistry, Dr. Harris received his Ph.D. from the University of Minnesota.

selectivity

linearity

accuracy

precision

sensitivity

range

limit of detection

•limit of quantitation

ruggedness/robustness

Standard reference materials (SRMs) best for determining accuracy.

Fig. 4.1. General process for evaluation/validation of methodology

©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)

Bases are separated in order of size.

Each band in a lane has one of the four base colors.

Fig. 25.9. Gel electrophoresis separation of nucleotides. Each vertical lane represents a different sample.

©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)

Proteins perform most of life functions.

Protein structure needs to be understood to understand function.

Proteomics is the study of proteins in the cell:

- protein sequencing to determine structure
- protein interaction

We study the expression of genes in producing proteins.

In 2-D PAGE (polyacrylamide gel electrophoresis), proteins are first separated based on charge.

Then they are separated based on size to give a 2-D plot.

Proteins in individual spots are excised, degraded into a mixture of peptides, and analyzed by MALDI-TOF (mass spectrometry).

Computer databases identify the protein form the peptide sequences.

©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)

Fig. 25.12. 2D-gel separation of proteins.

You may insert the graph within the data sheet (Sheet 1), or a new Sheet 2.

	A	B	С	D	E	F	G		
1	Riboflavin, ppm	Fluorescence intensity							
2					4		1		
3	0.000	0.0	Calibration Curve						
4	0.100	5.8							
5	0.200	12.2	50.0	50.0					
6	0.400	22.3	A 40.0	0					
7	0.800	43.3	Sug 35	y = 53.75x + 0.595					
8			1 30.0	E 30.0 R ² = 0.9989					
9			25.0						
10			20.0	0 -	-				
11			e 15.0	0 -	/				
12			P 10.0	0 -					
13			5.0	0 - /					
14			0.0	0	1	1. 1.			
15				0.000 0.200 0.400 0.600 0.800 1.000 Riboflavin, ppm					
16									
17					1				
18									

Fig. 3.9. Calibration graph inserted in spreadsheet (Sheet 1).

©Gary Christian, Analytical Chemistry, 6th Ed. (Wiley)

What is taught?

In the U.S., there is no set curriculum

Each department in a university sets the curriculum

Some stick to standard curriculum

Others have deleted or downgraded older methodologies like gravimetry or titrimetry in favor of those more used in the real world

But some value the basics and rigor of the standard methods. In the laboratory, they teach care in measurement.

Teaching equilibria is always a challenge, but considered important in many fields. Spreadsheets can help students.

1980 Symposium on Teaching of Analytical Chemistry

Survey of 25 major institutions:

40% taught analytical chemistry in Freshman year Some by analytical chemists Some by others, and only lab

Typical texts:

Gravimetry
Volumetric methods
Acid-base equilibria
Spectrophometry (UV-vis, IR, atomic)
Potentiometry
Separations (solvent extraction, chromatography)

1984 ACS Exam Survey

175 schools solicited, 95 responses List of 100 topics: Not one topic was checked 100% of time

Top 30%: General classical methods Statistics Potentiometry Spectrophotometry Next 10%: **Atomic spectrometry** Chromatography Lower 50%: **Instrumental topics:** voltammetry, IR

Peter Griffiths, University of Idaho, 2007

Survey of Universities in the Western USA (Society of Western Analytical Professors Mailing List)

Do you use the ACS Examination? How many lecture periods on different topics? Is this topic covered in the laboratory?

Peter Griffiths, 2007

Who Takes The Course?

Major Subject	% of Respondents
Chemistry majors and minors	70%
Biochemistry majors	15%
Others include: •Chemical engineering •Microbiology, molecular biology •Food science, nutrition •Environmental studies •Industrial hygiene, public health •Geology •Medical technology •Forensic anthropology	
Peter Griffiths, 2007	

Topics and Percentage Not Covered

Solution Preparation	43%
Error analysis and statistics	0%
Sampling	53%
Spread sheets	63%
Equilibria	3%
Activity	13%
Titration curves (general)	17%

Topics and Percentage Not Covered

Acid-base equilibria	3%
Acid-base titrations	7%
Buffer solutions	13%
Precipitation equilibria	23%
Precipitation titrations	60%
Gravimetric analysis	50%
Complexometric titrations	33%

Peter Griffiths, 2007
Topics and Percentage Not Covered

Reduction and oxidation	10%
Redox titrations	27%
Potentiometry	17%

Coulometry53%Other electrochemical methods60%Should these be covered in a futureinstrumental analysis course?

Peter Griffiths, 2007

Topics and Percentage Not Covered

Separation and chromatography theory	13%
Gas chromatography	30%
HPLC	40%

Electrophoresis80%Ion exchange77%Should these be covered in a future instrumental
analysis course?

Peter Griffiths, 2007

Griffiths Survey 2007

Topic

Peter Griffiths, 2007

1997 Report

http://www.asdlib.org/files/curricularDevelopment_report.pdf

CURRICULAR DEVELOPMENTS IN THE ANALYTICAL SCIENCES A Report from the Workshops

October 28-30, 1996 Leesburg, VA

March 13-15, 1997 Atlanta, GA

SUMMARY OF RECOMMENDATIONS AND IMPLEMENTATION MODES

1. COURSE CONTENT AND LEARNING MODES

Undergraduate analytical curricula need to better prepare students to solve future problems and to pursue analytical science careers.

1. COURSE CONTENT AND LEARNING MODES

RECOMMENDATION 1

That the analytical community develop context-based curricula that incorporate problem-based learning (PBL)

Students must know how to use the scientific method & the analytical process

To be effective, must encompass:

- Complete process sampling
- Sample preparation or separation
- Measurement
- Data analysis and interpretation

1. COURSE CONTENT AND LEARNING MODES

RECOMMENDATION 2

That teaching styles accommodate students' different learning needs.

Methods should emphasize the development of oral and written communication skills:

Small-group learning
Cooperative learning
Project-centered classes
Investigative-oriented labs and lectures
Case studies
Emerging technologies
Assessment tools of context-based leaning

1. COURSE CONTENT AND LEARNING MODES

RECOMMENDATION 3

That more students be offered hands-on learning opportunities.

Bring **context-based learning** to introductory courses

Context-based educational principles should be used in the **introductory chemistry labs that involve analytical measurements**.

Provide undergraduates research opportunities with faculty members

2.CORE TECHNOLOGIES FOR UNDERGRADUATE LABS

RECOMMENDATION 1

That the analytical community develop a list of appropriate and well developed technologies that faculty may consider for their classes and laboratories.

Pursue continuing education: Faculty must actively upgrade their technological skills

Encourage vendors to serve the education market

Broaden definition of technology: By broadening the definition of technology to include more than what might be found in analytical chemistry

2.CORE TECHNOLOGIES FOR UNDERGRADUATE LABS

RECOMMENDATION 2

That faculty and their departments strive to incorporate today's technology into classrooms and laboratories and to use technology as an access to real-world leaning.

Use technology to link classrooms and to enhance learning: Through the Internet, the web, video-teleconferencing, and virtual classrooms and laboratories

3. FACULTY DEVELOPMENT

RECOMMENDATION: That faculty in the analytical areas broaden their technical skills and industry awareness by seeking non-academic resources and learning opportunities.

Invite non-academics to campus

Seek sources for real-world problems

Through contacts with local and regional industries, faculty can find sources for real-world problems and even samples that can be used in the classroom and laboratory.

Develop exchange and visitation programs

Establish a non-academic advisory board

Support development of the Senior Analytical Corps

4. LEARNING PARTNERSHIPS WITH INDUSTRY

RECOMMENDATION

That industries form learning partnerships with educators in the analytical sciences.

European Credit Transfer and Accumlation System

:: What is:

Credit system

A credit system is a systematic way of describing an educational programme by attaching credits to its components.

The definition of credits in higher education systems may be based on different parameters, such as student workload, learning outcomes and contact hours.

ECTS

The European Credit Transfer and Accumulation System is a student-centred system based on the student workload required to achieve the objectives of a programme, objectives preferably specified in terms of learning outcomes and competences to be acquired.

How did ECTS develop?

ECTS was introduced in 1989, within the framework of Erasmus, now part of the Socrates programme. ECTS is the only credit system which has been successfully tested and used across Europe. ECTS was set up initially for credit transfer.

The system facilitated the recognition of periods of study abroad and thus enhanced the quality and volume of student mobility in Europe. Recently ECTS is developing into an accumulation system to be implemented at institutional, regional, national and European level.

This is one of the key objectives of the Bologna Declaration of June 1999.

Regarding the minimum content in Analytical Chemistry for all Spanish Universities, there is the "White Book of the Degree in Chemistry" edited by ANECA (National Agency for Quality Evaluation and Accreditation). It is in Spanish (204 pages)

This document fixes a minimum content of 22.5 ECTS for Analytical Chemistry.

Minimum content of 22.5 ECTS for Analytical Chemistry. The minimum theoretical content is as follows:

The analytical process

The measurement in Analytical Chemistry

Analytical Chemistry of solutions

•Qualitative analysis: identification of chemical species

•Gravimetric and volumetric quantitative analysis

•Analytical separation techniques: non chromatographic and chromatographic techniques

Instrumental analysis: general principles-Optical

techniques of analysis

Optical techniques of analysis

•Electroanalytical techniques

Instrumental hybridation

Introduction to chemometrics

The document also suggests the distribution of the minimum theoretical content and the practical content into three parts:

Analytical Chemistry I (The analytical process, The measurement in Analytical Chemistry, Analytical Chemistry of solutions, Qualitative analysis: identification of chemical species, Gravimetric and volumetric quantitative analysis). Minimum 5 theoretical ECTS plus 2.5 practical ECTS.
Analytical Chemistry II (Analytical separation techniques: non chromatographic and chromatographic techniques, Instrumental analysis: general principles, Optical techniques of analysis, Electroanalytical techniques, Instrumental hybridation, Introduction to chemometrics). Minimum 10 theoretical ECTS.

•Experimental Analytical Chemistry (Applications of the main instrumental techniques: non chromatographic and chromatographic techniques, optical techniques of analysis, electroanalytical techniques, etc.). Minimum 6 practical ECTS. Of course, there are some differences among universities.

For instance, the University of Salamanca decided to split Analytical Chemistry II into two subjects:

- One for separations techniques (6 ECTS)
- Another one for instrumental analysis (6ECTS).
- This makes a total of 12 ECTS (two more than the minimum fixed in the White Book).

WILEY-VCH

Analytical Chemistry

A Modern Approach to Analytical Science Second Edition

	Contents xxi
36	Process Analytical Chemistry 1120
	Chapter Outlook 1120
36.1	What is Process Analysis? 1121
36.2	Why do Process Analysis? 1121
36.3	How Does Process Analysis Differ from Laboratory Analysis? 1122
36.4	Process Analytical Techniques and Their Applications 1123
36.4.1	Separations (Chromatography) 1125
36.4.2	Spectroscopic Techniques 1126
36.4.3	Wet Chemical Aanalysis 1130
36.4.4	Other Techniques 1132
36.5	Chemometrics 1132
36.6	Sampling Strategies (Analyzer/Process Interface) 1132
36.6.1	Sampling for On-Line Analysis 1133
36.6.2	Interfaces for In-Line Techniques 1135
36.7	Process Control Strategies Based on Process Analyzers 1135
-	Ouestions and Problems 1136
	Recommended Reading 1136
	Appendix 1137
1	Symbols 1137
2	Abbreviations and Acronyms 1139
3	Key to Literature 1146
4	List of SI Units 1149
5	Collection of Data 1151
6	Laser Principles and Characteristics 1158
7	Colthup Table 1160
8	Statistical Tables 1161
9	Matrix Algebra 1164
10	Answers to Questions and Problems 1167
-	
	Index 1169

Quantitative Analysis Experiments, U.W.

Safety, Volumetric glassware use, Weighing operations, Lab notebook

- 1. Gravimetric determination of chloride
- 2. pH titration of unknown weak base
- 3. EDTA titration of calcium (H₂O hardness)
- 4. lodometric determination of ascorbic acid
- 5. Potentiometric determination of F^- in H_2O

6. Spectrophotometric determination of manganese by standard addition method

7. Solid phase extraction/preconcentration and spectrophotometric determination of methyl red

8. Reaction rate assay of glucose

9. Ion chromatography (mixture of Cl⁻ & NO₃⁻)

Instrumental Analysis Experiments, U.W.

- 1. Separation of Common Analgesics by HPLC (salicylamide, Tylenol, caffeine, aspirin)
- 2. Capillary GC-MS
- 3. Cyclic Voltammetry (ferricyanide reduction)
- 4. Determination of Fat Content of Milk by FTIR
- 5. Flow Injection Analysis (D, throughput, AI in H₂O)
- 6. Determination of Metals by Plasma Emission

Some New Ways We Teach – Modern Technology

We have new ways to interact with students and to deliver to them:

PowerPoint Email Text message Posting lectures, problems Answering them etc. etc.

I'm glad I don't have to keep up with all of this now.

And it surely takes more of the instructor's time. Example: Sandy Dasgupta spreadsheet problems, videos

Spreadsheets allow us to perform complicated calculations, plots

- Titration curves, derivatives
- Alpha vs. pH plots
- log C vs. pH plots
- Equilibrium calculations

Seventh Edition

Reviewer biggest challenges:

- While students do well in lab, understanding theory behind the techniques & solving analytical problems are their biggest hurdles
- Many concepts have to be retaught: relearning concepts like equilibrium
- Wide range in academic ability & background
- Weak math skills
- Challenge students to think critically vs. cookbook thinking
- Finding a balance between breadth & depth

Derivative titration curves – H₃PO₄ titration

B 1	🗟 Microsoft Excel - Sec 8.11 Derivative titrations- Lasy methoda																
8	Ello Edit View	Insert Fo	rmat Iools Data	Window Help	,	-									_ 6 >		
0		13 29 3	K 🗈 🖻 🥑	63 + C4 +	S. Σ fn	1 31 10 23	100% + ×	Calibri	• 11	BIU		\$ % .	2 22 0	हि स	·		
-	5	- =						11		-			AA				
	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0 7		
1	e.	0.1	N		Chapter 8	8.11 xisx						To use thi	s workshe	et for a	different (
2	2	0.17	2		Generation	Titration nints	by nH incre	ments Th	a Easy Method								
1	-0	0.17			Conter aurig	The about plots	by princie	mente. m	e Lasy meniou		27.00	enter NAU	as u. ror	a mono	protic acie		
3	VA	50)		Vp	<i>≢∂</i>	VA {([OH]-	- [H*]) + C,	$(\alpha_1 + 2\alpha_1 + 3\alpha_2)$))/(C ₈ + [H*] - [OH])	other variables as well as you wish. S					
4	KAA	1 10E-02	2									This					
5	KAB	7.50E-08	3									and					
8	KAC	4.80E-13	5									Previous					
1	KW	1.00E-14	ti Contractor to	100	7707	0.01	30			_	1554221010	Row	0200	1000	1.		
8	Goal Seek	Residual,	hirst row only	Ve	pH	[H]	Q	a 1	α ₂	G (3	[OH-]	Av Ve	ΔV.	Дрн	ΔρΗ/ΔV.		
9	1.54E-01		I	0	1.550996	0.028119266	3.09E-05	2.81E-01	7.50E-07	1.28E-17	3.55628E-13	-					
10			1	0.252586	1.56	0.027542287	2.92E-05	2.85E-01	7.77E-07	1.35E-17	3.63078E-13	0.126293	0.252586	0.009	0.035647		
11				0.532409	1.57	0.026915349	2.75E-05	2.90E-01	8.00E-07	1.44E-17	3.71535E-13	0.392497	0.279023	0.01	0.035737		
12				0.811492	1.58	0.02630268	2.58E-05	2.95E-01	8.41E-07	1.53E-17	3.80189E-13	0.67195	0.279084	0.01	0.035832		
13				1 089838	1.59	0.025703958	2.43E-05	3 00E-01	8 74E-07	1.63E-17	3 89045E-13	0.950665	0.278346	0.01	0.035927		
14				1.36/446	1.6	0.025118864	2.28E-05	3.05E-01	9.09E-07	1./4E-1/	3.98107E-13	1.228642	0.277608	0.01	0.036022		
10				1.044310	1.01	0.024547088	2.14E-00	3.08E-01	8,45E-07	1.60E-17	4.0736E-13	1.202881	0.276122	0.01	0.030118		
10			-	2 10504	1.02	0.023366329	1 000 05	3.140-01	1 025 08	2 005 17	4 10009E+13	2 060144	0.270132	0.01	0.026212		
18		_		2.10004	1.05	0.022908677	1 785-05	3.74E-01	1.065-06	2.035-17	4 365165-13	2 333165	0.273332	0.01	0.030312		
19		_		2.410403	1.65	0.0223030311	1.675-05	3.296-01	1.10E-08	2 37E-17	4 46684E-13	2.600100	0.214040	0.01	0.00041		
20				3 017545	1.66	0.021877616	1.57E-05	3 35E-01	1 15E-06	2.52E-17	4 57088E-13	2,880969	0.273153	0.01	0.03661		
21		_		3 289943	1 67	0.021379621	1.48E-05	3 40E-01	1.19E-06	2.68E-17	4 67735E-13	3 153744	0 272398	0.01	0.036711		
22				3.56158	1.68	0.020892961	1.39E-05	3.45E-01	1.24E-06	2.84E-17	4.7863E-13	3.425762	0.271637	0.01	0.036814		
23				3.83245	1.69	0.020417379	1.31E-05	3.50E-01	1.29E-06	3.02E-17	4.89779E-13	3.697015	0.270869	0.01	0.036918		
24				4 102544	17	0 019952623	1 23E-05	3 55E-01	1.34E-06	3.21E-17	5 01187E-13	3 967497	0.270094	0.01	0 037024		
25				4.371855	1.71	0.019498446	1.16E-05	3.61E-01	1.39E-06	3.42E-17	5.12861E-13	4.237199	0.269311	0.01	0.037132		
26				4.640372	1.72	0.019054607	1.09E-05	3.66E-01	1.44E-06	3.63E-17	5.24807E-13	4.506113	0.268517	0.01	0.037242		
27				4.908086	1.73	0.019620071	1.03E-05	3.71E-01	1.50E-06	3.86E-17	5.37032E-13	4,774229	0.267714	0.01	0.037353		
28				5.174986	1.74	0.018197009	9.67E-06	3.77E-01	1.55E-06	4.10E-17	5.49541E-13	5.041536	0.2669	0.01	0.037467		
29			1	5.441058	1,75	0.017782794	9.10E-08	3.82E-01	1.61E-06	4 35E-17	5.62341E-13	5 308022	0 266073	0.01	0.037584		
30				5.706292	1.76	0.017378008	8.57E-06	3.88E-01	1.67E-06	4.62E-17	5.7544E-13	5.573875	0.265233	0.01	0.037703		
31				5.970672	1.77	0.016982437	8.07E-06	3.93E-01	1.74E-06	4.91E-17	5,88844E-13	5.838482	0.26438	0.01	0.037824		
32				6.234184	1.79	0.016595069	7.60E-06	3.99E-01	1.90E-06	5.21E-17	6.0256E-13	6 102420	0.263512	0.01	0.037949		
33				6.496812	1.79	0.016218101	1.16E-08	4.04E-01	1.8/E-06	5.53E-17	8.16595E-13	6.365498	0.262628	0.01	0.038077		
34	-			7.010361	1.8	0.015848932	0.74E-00	4 10E-01	1.94E-06	5 8/E-17	0 30857E-13	0.02/0/0	0.261728	0.01	0.038208		
20		_		7.019351	1.01	0.015460166	5.00E 00	4.15E-01	2.01E-06	0.23E-17	0.45054E-13 8.80809E-15	7 140200	0.260011	0.01	0.038342		
14 4	HI HI But	ter Intensit	y and Capacity	/ 1st and 2	nd deriv \Ca	Iculations / Inst	tructions /	4.210-01	2.082-06	0.010-11	0.00080E-13	1.148208	0.208070	0.01	0.03010		
Rea	dy		to a second constant of the	• • • • • • • • • • • • • • • • • • •		ALL COLOR OF ALL CALLS			4.53	1		1	1	UM I			

H₃PO₄ alpha vs. pH

	Microsoft Excel - Ch7 p246 new Fig. 7.2												Ľ	9									
	<u>File E</u> dit	: <u>V</u> iew]	[nse	rt F <u>o</u> rm	nat	<u>T</u> ools [<u>)</u> ata	<u>W</u> ind	ow	<u>H</u> elp)										_ 8	×	:
D	🛩 🔛	a C) (8 %	Ē	6	7 1	0 -	Cal.	- 1	2	Σ	f _*	₽↓		100%	•	» ▼	в	I	Α	÷ 3	» ₹
	14	-		=																			_
		Α		B			С			D	1			F		F		G			Н	-	Ξ
1	Figure	7.2 Ca	lcu	lation	ofa	loha y	, alua	es fo	r H₀l	PO.		nł	4.	-		•						_	-
5	Alpha (a) donoi	min	otor O	– r∟	4+1 ³ ⊥ 1	/ .TH	+12 +		 	ты+1	- L			_		+					-	
4	Albita (aj ueno		ator G	ין –	1] ± r	\a1[U 52	·] +	_∿a1	r\a2[τr		a2ha	3		-					_	
3	Numera	ators: o	0 =	[H⁺]°; c	$x_1 =$	K _{a1} [H	']*; o	12 = K	G1K	₃2[H	[*]; (23 =	= Ka	1Ka2k	<a3< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th></a3<>							_	
4		Ka	ı1 ⁼	1.10E	-02			K _{a2} =		7.5	0E-(38		K _{a3}	= 4	I.80E-1	3						
5			pН	[H ⁺ _		Denor	nina	tor C	1	α.	0			α <u>1</u>		a _2		\mathbf{a}_3					
6		(0.0		1		1.01E	E+00		9.8	9E-(D1	1.0)9E-0	2 8	3.16E-1	0 3	3.92E	-22				
7			0.5	0.316	228		3.27	E-02		9.6	6E-(D1	3.3	36E-0	2 7	'.97E-0	9	1.21E	-20				
8			1.0		0.1		1.11	E-03		9.0	1E-(D1	9.9	91E-0	2 7	'.43E-0	8 3	3.57E	-19				
9			1.5	0.031	623		4.26	E-05		7.4	2E-(D1	2.5	58E-0	1 8	6.12E-0	7 9	9.29E	-18				
10		2	2.0	0).01		2.10	E-06		4.7	6E-(D1	5.2	24E-0	1 3	8.93E-0	6	1.89E	-16				
11		2	2.5	0.003	162		1.42	E-07		2.2	3E-(D1	7.7	7E-0	1 1	.84E-0	5 2	2.80E	-15				
12		3	3.0	0.	001		1.20	E-08		8.3	3E-(02	9.1	7E-0	1 8	6.87E-0	5 3	3.30E	-14				
13		3	3.5	0.000	316		1.13	E-09		2.7	9E-(02	9.7	'2E-0	1 2	2.30E-0	4 🔇	3.50E	-13				
14		1	4.0	0.0	001		1.11	E-10		9.0	0E-(03	9.9	90E-0	1 7	7.43E-0	4	3.56E	-12				
15		1	4.5	3.16E	-05		1.11	E-11		2.8	6E-(33	9.9	95E-0	1 2	2.36E-0	3 3	3.58E	-11				
16		ŧ	5.0	0.00	001		1.11	E-12		9.0	2E-(34	9.9	92E-0	1 7	.44E-0	3 3	3.57E	-10				
17		ŧ	5.5	3.16E	-06		1.13	E-13		2.8	1E-(04	9.7	7E-0	1 2	2.32E-0	2	3.52E	-09				
18		6	5.0	0.000	001		1.18	E-14		8.4	6E-(05	9.3	30E-0	1 8	6.98E-0	2 3	3.35E	-08				
19		6	6.5	3.16E	-07		1.36	E-15		2.3	2E-(05	8.0)8E-0	1 1	.92E-0	1 3	2.91E	-07				
20		7	7.0	1E	-07		1.93	E-16		5.1	9E-(06	5.7	'1E-0	1 4	I.29E-0	1 :	2.06E	-06				
21		7	7.5	3.16E	-08		3.71	E-17		8.5	3E-(D7	2.9	97E-0	1 7	'.03E-0	1	1.07E	-05				
22		8	3.0	1E	-08		9.35	E-18		1.0	7E-(37	1.1	8E-0	1 8	8.82E-0	1	4.24E	-05				
23		8	3.5	3.16E	-09		2.72	E-18		1.1	6E-(38	4.0)5E-0	2 9	9.59E-0	1	1.46E	-04				
24		9	9.0	1E	-09		8.36	E-19		1.2	0E-(39	1.3	32E-0	2 9	9.86E-0	1	4.73E	-04				
25		9	9.5	3.16E	-10		2.62	E-19		1.2	1E-	10	4.1	9E-0	3 9	9.94E-0	1	1.51E	-03				
26		10	0.0	1E	5-10		8.30	E-20		1.2	0E-1	11	1.3	3E-0	3 9	9.94E-0	1	4.77E	-03				
27		10	0.5	3.16E	-11		2.65	E-20		1.1	9E-1	12	4.1	5E-0	4 9	9.85E-0	1	1.49E	-02				
28		1′	1.0	1E	-11		8.65	E-21		1.1	6E-	13	1.2	27E-0	4 9	9.54E-0	1	4.58E	-02				
29		11	1.5	3.16E	-12		3.00	E-21		1.0	5E-1	14	3.6	6E-0	5 8	3.68E-0	1	1.32E	-01				
30		12	2.0	1E	-12		1.22	E-21		8.1	9E-1	16	9.0)1E-0	6 6	6.76E-0	1 3	3.24E	-01				
31		12	2.5	3.16E	-13		6.57	E-22		4.8	1E-	17	1.8	67E-0	6 3	3.97E-0	1 6	6.03E	-01				
32		13	3.0	1E	-13		4.79	E-22		2.0	9E-1	18	2.3	30E-0	7 1	.72E-0	1 8	3.28E	-01				
33		13	3.5	3.16E	-14		4.22	E-22		7.4	9E-:	20	2.6	61E-0	8 8	6.18E-0	2 9	9.38E	-01				
34		14	4.0	1E	-14		4.04	E-22		2.4	7E-2	21	2.7	'2E-0	9 2	2.04E-0	2 9	9.80E	-01				
35	Formula	as for ce	ells	in bolc	lfac	e:																	
36	Cell B6	5 = [H ⁺] :	=	10~A6																			
37	Cell C6	=denon	n.=	B6^3+9	\$B\$	4*B6^2	+\$B	\$4*\$[0\$4*	B6-	+\$B	\$4*	\$D\$	4*\$F	\$4								
38	Cell D6	$i = \alpha_0 =$		B6^3/C	6																		
39	Cell E6	$i = \alpha_1 =$		(\$B\$4*	B6^	2)/C6																	
40	Cell F6	i = 0 ₂ =		(\$B\$4*	\$D\$	4*B6)/	C6																
41	Cell Gf	i = 05 =		(\$R\$4*	SD\$	4*\$F\$4	4VCF	i 	,					-								2	•
◀ ◀		Chart1	λs	neet1	ζ Sł	neet2 /	(She	et3,					14								•	11	
Rea	idy																NU	JM 📃					1

рΗ

HOAc logC vs. pH

🖾 V	🛎 Microsoft Excel - Problem 66, Chpt 7												
	<u>F</u> ile <u>E</u> dit <u>y</u>	<u>v</u> iew <u>I</u> nsert	F <u>o</u> rmat <u>T</u> oo	ls <u>D</u> ata <u>W</u>	indow <u>H</u> elp				_ 8 ×				
D	🛩 🔛 🖡	a 🕻 🖗	🐰 🖻 🛍	l 🕺 🔊	+ cx + 🍳	_δ Σ f _* A/Z	1 🛍 95%	• • •	A - *				
	H13	-	=										
	A	В	С	D	E	F	G	H					
1	Log curv	es for 0.00	01 M acetic	acid syst	em. Chapt	er 7, Probl	em 66.						
2		C _{HOAc} =	0.001	Ka=	1.75E-05								
3	pН	[HOAc]	log[HOAc]	[0Ac ⁻]	log[0Ac ⁻]	log[H⁺]	log[OH ⁻]						
4	0.00	0.001	-3.00		-7.76	0.00	-14.00						
5	4.00	0.001	-3.00		-3.76	-4.00	-10.00						
6	4.76	0.0005	-3.30	0.0005	-3.30	-4.76	-9.24						
4	5.50		-3.74	0.001	-3.00	-5.50	-8.50						
a	12.00 Formulae	for colle in	-10.24	0.001	-3.00	-12.00	-2.00						
10	Coll B4 · 1			\$C\$2	(Convito Co	all B5)							
11		noAc) = c adHOAcl :	'HUac — -	ΨΟΨ2 LOG10/B/	OG10(B4) (Convite Cell C6)								
12	Cell E4: 1	og[NOAc1] =	- Ioa(K₋ v Cu	(D010(D4 (D01)+ nH =	"/ =	(Copy to C							
13	=	U OG10(\$E	109(r∖a ∧ ⊂r \$2*\$C\$2\+4	10Ac) ' р''' АЛ	(Convito Ce	all ES)							
14	Cell F4	log[H ⁺] = -r	-φ2 φΟφ2)!/ hH =	γ . (-Δ4)	(A4) (Copy to cell E5)								
15		$\log[OH] = 1$	14 - Iog(H ⁺)	=	(00py 10 cr (-14-F4)	Convito en	d)						
16	Cell B6	$[H\cap A_{c}] = ($	$D_{\text{Loss}}D =$	\$C\$2/2	(14 1 4)	Copy to ch	3)						
17			PHUAC/A	φοφ272 RG									
18		log[OAc1 = [i		00									
10		log[UAC] =	$= \log(C_{\text{max}})$	/K) - nH =		:ጋ/⊈⊑⊈ጋ_∆7	(Convito C	`all (18)					
20			- 109(CHUA	a v a) - hii - a v a) - hii -	Conuito Co	1274042J-777 11 DON	(Cob) to C	/6// (00)					
20	Diet A4:A		HOACT DININD E	φυφ∠ Ar⊏O and D	COPY TO CE	100) -172-	nd 4)						
21	This enroy	o VS. C4.CC adeboat car), D4.D0, E4 n he used fo	4.⊑O, anu i ur other cor	-4.FO (Serie Contrations	of acetic a	nu 4) rid iust hv						
23	changing	the value of	f Cell C2.		loonnanons								
24									-				
	I ► N\ C	hart1 λShe	et1 / Shee	t2 / Sheet	3/	•							
Rea	dy						NUM						

Log C diagram for 0.001M HOAc (Problem 66)

pН

H₂A, malic acid logC vs. pH

X I	hicrosoft	Excel - P	roblem 69	, Chpt 7									<
8	<u>File E</u> dit	<u>V</u> iew <u>I</u> nse	ert F <u>o</u> rmat]	[ools <u>D</u> ata	ı <u>W</u> indow	Help					L	8	×
D	🖻 🖬	s 🗋	۵ 🖁 🌾	🛍 💅	ю + сі	- 😩 🗴	∑ f _* ੈ	Z↓ 🛍	4 6 85%	•	ВА	·	» •
	019	-	=										_
	A	В	С	D	E	F	G	Н	1	J	ĸ	<u> </u>	•
1	Log-log pl	lot malic a	cid, H₂A, fror	n œ-values	s. Chapter	r 7, Proble	m 69.						
2	Alpha (α) o	tenominaor	= [H [*]] ² + K _{a1} [H	*] + K _{a1} K _{a2}									
3	Numerators	$\alpha_0 = [H^*]^2$	$\alpha_1 = K_{\mathbf{a}1}[H\mathbf{+}], \alpha_1 = K_{\mathbf{a}1}[H\mathbf{+}], \alpha_1 = K_{\mathbf{a}1}[H\mathbf{+}], \alpha_1 = K_{\mathbf{a}1}[H\mathbf{+}], \alpha_2 = K_{\mathbf{a}1}[H\mathbf{+}], \alpha_3 = K_{\mathbf{a}1}[H\mathbf{+}], \alpha_4 = K_{\mathbf{a}1[H\mathbf{+}], \alpha_4 = K_{\mathbf{a}1[H\mathbf{+}], \alpha_4 = K_{\mathbf{a}$	$x_2 = K_{a1}K_{a2}$									
4	K _{a1} =	4.00E-04	K _{a2} =	8.90E-06	C =	0.001	log[H ₂ A]	log[HA]	log[A ²]				
5	pH	[H⁺]	Denominato	a .	Œ.,	œ,	log(C×a_)	log(Cל.)	log(C×a_)	log[H⁺]	log[OH]		
6	0.0	1.0	1.00E+00	1.00E+00	4.00E-04	3.56E-09	-3.00017	-6.39811	-11.4487	0	-14		
7	0.5	0.3	1.00E-01	9.99E-01	1.26E-03	3.56E-08	-3.00055	-5.89849	-10.4491	-0.5	-13.5		
8	1.0	0.1	1.00E-02	9.96E-01	3.98E-03	3.55E-07	-3.00173	-5.39967	-9.45028	-1	-13		
9	1.5	0.0	1.01E-03	9.88E-01	1.25E-02	3.52E-06	-3.00546	-4.9034	-8.45401	-1.5	-12.5		
10	2.0	0.0	1.04E-04	9.62E-01	3.85E-02	3.42E-05	-3.01705	-4.41499	-7.4656	-2	-12	<u> </u>	
11	2.5	0.0	1.13E-05	0.87E-01 7.10⊑.04	1.12E-01	3.16E-04	-3.05186	-3.94981	-6.50041	-2.5	-11.5	$\left - \right $	
12	3.0	0.0	2,30E-05	4.35E-01	5.50E-01	2.54E-03	-3.14723	-3.54517	-3.33370	-35	-11		
14	4,0	0.0	5,36E-08	1.87E-01	7.47E-01	6.65E-02	-3,72884	-3.12678	-4,17739	-3.3	-10		
15	4.5	0.0	1.72E-08	5.81E-02	7.35E-01	2.07E-01	-4.23576	-3.1337	-3.68431	-4.5	-9.5		
16	5.0	0.0	7.66E-09	1.31E-02	5.22E-01	4.65E-01	-4.88423	-3.28217	-3.33278	-5	-9		
17	5.5	0.0	4.83E-09	2.07E-03	2.62E-01	7.36E-01	-5.68439	-3.58233	-3.13294	-5.5	-8.5		
18	6.0	0.0	3.96E-09	2.52E-04	1.01E-01	8.99E-01	-6.5978	-3.99574	-3.04635	-6	-8		
19	6.5	0.0	3.69E-09	2.71E-05	3.43E-02	9.66E-01	-7.56662	-4.46456	-3.01517	-6.5	-7.5		
20	7.0	0.0	3.60E-09	2.78E-06	1.11E-02	9.89E-01	-8.5563	-4.95424	-3.00485	-/	-/	<u> </u>	
21	7.5	0.0	3.57E-09	2.00E-07	1.12E-03	9.90E-01	-3.55233	-5.45035	-3.00134	-7.5	-0.5	— I	
23	8.5	0.0	3.56E-09	2.01E-00	3.55E-04	1.00F+00	-11.5516	-6 44954	-3.00043	-8.5	-5.5		
24	9.0	0.0	3.56E-09	2.81E-10	1.12E-04	1.00E+00	-12.5515	-6.94944	-3.00005	-9	-5		
25	9.5	0.0	3.56E-09	2.81E-11	3.55E-05	1.00E+00	-13.5515	-7.44941	-3.00002	-9.5	-4.5		
26	10.0	0.0	3.56E-09	2.81E-12	1.12E-05	1.00E+00	-14.5515	-7.94939	-3	-10	-4		
27	10.5	0.0	3.56E-09	2.81E-13	3.55E-06	1.00E+00	-15.5515	-8.44939	-3	-10.5	-3.5		
28	11.0	0.0	3.56E-09	2.81E-14	1.12E-06	1.00E+00	-16.5515	-8.94939	-3	-11	-3		
29	11.5	0.0	3.56E-09	2.81E-15	3.55E-07	1.00E+00	-17.5515	-9.44939	-3	-11.5	-2.5	—— I	
30	12.0	0.0	3.56E-09	2.01E-10 2.81E-17	1.12E-07 3.55E-08	1.00E+00	-10.5515	-9.94939	-3	-12	-2		
32	13.0	0.0	3,56E-09	2.81E-18	1.12E-08	1.00E+00	-20,5515	-10,9494	-3	-13	-1.3		
33	13.5	0.0	3.56E-09	2.81E-19	3.55E-09	1.00E+00	-21.5514	-11.4494	-3	-13.5	-0.5		
34	14.0	0.0	3.56E-09	2.81E-20	1.12E-09	1.00E+00	-22.5514	-11.9494	-3	-14	0		
35	Cell B6 = [H⁺] =		10^-A6									
36	Cell C6 = c	lenominator	(=	B6^2+\$B\$4	1*B6+\$B\$4*	\$D\$4							
37	Cell D6 = 4	K ₀ =		B6^2/C6									
38	Cell E6 = a	t ₁ =		\$B\$4*B6/C	6								
39	Cell F6 = a	6 ₂ =		\$B\$4*\$D\$4	ŀ								
40	Cell G6 = b	-		LOG10(%F)	\$4*D6)								
	Coll H6 - 4	$-g(C \times a) =$) R4*E6)								
40					₽7 LOJ 14+E0)							$\left - \right $	
42	Cell 16 = 10	$g(C \times \alpha_2) =$		LOG10(\$F:	р4°۲6)								
43	Cell J6 = lo	og[H⁺] =		LOG10(B6)								
44	Cell K6 = k	og[OH] =		(-14-J6)									
45 46	Copy each	Tormula do	whithrough Ce Millie Lead Jean	31. and 425	K24 (novin	1 2 2 4	and 5)						
40 47	FIULAD: A34	+ vs. Gb/G3	94, 110:11:34, 16:1	34, and R6:	n 34 (serie:	s 1, 2, 3, 4,	anos)						
40													•
•		Chart1 λ	Sheet1 (Sh	eet2 / Sh	neet3 /		•						
Rea	ady									NUM			1

(NH₄)₂HPO₄ logC vs. pH plot

N 12	🛿 Microsoft Excel - Sec 7.16 (NH4)2HPO4 logC-pH using master spreadsheet											
	<u>File E</u> dit <u>V</u> iew	v <u>I</u> nsert F <u>o</u> rr	nat <u>T</u> ools <u>D</u> a	ta <u>W</u> indow <u>H</u> e	lp				_ & ×			
	🖻 🖪 🎒	🗟 🎸 🐰	🖻 🛍 💅		🍓 Σ 🖅 🛃	🚺 🛍 🛷 100%	₀» 11 -	- B I 👌	• • <u>A</u> • • • •			
	0106 = =B106^4+KAAB1*B106^3+KAAB1*KAAB2*B106^2+KAAB1*KAAB2*KAAB3*B106+KAAB1*KAAB2*KAAB3*											
	A	В	KAAB4									
1	System	Α			System B				Section 7.16			
2	KAAA1	1.10E-02			KAAB1	5.71E-10			Master logC-p			
3	KAAA2	7.50E-08			KAAB2	0.00E+00			See Chart 1 fo			
4	KAAA3	4.80E-13			KAAB3	0.00E+00						
5	KAAA4	0.00E+00			KAAB4	0.00E+00						
6	CONCA	0.1			CONCB	0.2						
7												
8	pН	[H+]	[OH-]	[H3PO4]	[H2PO4-]	[HPO42-]	[PO43-]	[NH4+]	[NH3]			
9	0	1	1E-14	0.098912	0.001088032	8.16024E-11	3.91691E-23	0.2	1.142E-10			
10	0.1	0.794328	1.26E-14	0.0986341	0.001365903	1.28968E-10	7.79332E-23	0.2	1.43769E-10			
11	0.2	0.630957	1.58E-14	0.0982865	0.001713509	2.0368E-10	1.54949E-22	0.2	1.80995E-10			
12	0.3	0.501187	2E-14	0.0978523	0.002147652	3.21385E-10	3.07798E-22	0.2	2.27859E-10			
13	0.4	0.398107	2.51E-14	0.0973112	0.002688782	5.06544E-10	6.10742E-22	0.2	2.86857E-10			
14	0.5	0.316228	3.16E-14	0.0966384	0.003361573	7.97267E-10	1.21017E-21	0.2	3.61132E-10			
15	0.6	0.251189	3.98E-14	0.0958045	0.004195452	1.25268E-09	2.39376E-21	0.2	4.54638E-10			
_16 【 【	► ► Char	100528 t1 Sheet1	1 = 14 Sheet29	0.004775 Sheet3 /	0.005005000	<u>1 06402⊏ 00</u>] 1	/ 70/08⊏ 01	<u></u>	5.70256E 10 ¥			
Rea	dy					Sum=1.	14121E-38	NUN				

C Bill B Http://focumility.com/http://Socialactionersportedbook	2423788mmHe14088475750vesuesHe13101 Ω + 0	G 🔮 Christian, Daugupta, Schug., 🕷	ର ଜାଷ
	WILEY	Tech Support. Contact Un Lag In	
	Christian, Dasgupta, Schug Analytical Chemistry, 7th Edition	INSTRUCTOR COMPANION SITE	
	Home Browse by Chapter - Browse by Resource - Mo	re information 🕒	
	Excel Spreadsheets	Get Help With: Zp Files	
	Chapter 2 Chapter 34 Chapter 3 Chapter 36 Chapter 6 Chapter 17	* These Kala will sport a non-scholaw	
	Chapter 7 Chapter 19 Chapter 8 Chapter 20 Chapter 9 Chapter 21		
	Chapter 10 Chapter 23 Chapter 11 Chapter 13		
	Copyright © 2000-2013 by John Wiley & Sons, Inc., or related companies. All right res	Haned, 1Philacy Policy WILEY	

Calculate pH for a mixture of 0.012M (NH4)2LiPO4, 0.020M NaH2PO4, 0.013M K2HAsO4 and 0.0021M NaOH.

```
H3PO4: pK1 =2.15 pK2 =7.21 pK3 =12.36
H3A=0 H2A-=0.020 HA2-=0 A3-=0.012
```

```
H3AsO4: pK1=2.25 pK2 =7.00 pK3 =11.52
H3A=0 H2A-=0 HA2-=0.013 A3-= 0
```

```
MeOH = 0.0021
```

NH4+: Kb= 4.76B = 0 BH+ = 0.024

pKw	14.00	<=15	Calculating	j pH	Nam	ne or code!		0/9/2008 4:55:24 PM
Aci	d Base Cons	tants		Startconce	ntrations			Gives current date and time
рК1	рка	ркз р	K4					
Strong HA	-		HA JO		- 1			
1. Strong M28	ja		HZA ID	HA: 0	AC 0			
Z Strong HZA	0		H2A 0	HA- 0	A2- 10			
7. Weak HA	- H		HA IO	A 0				
2 West HM U			ros jo	M: [0	-			
1 Wesk H2A 0	0		124 0	HAN JO	A2 0	2		
t West Has	0		H2A [0	100 10	~ 10	No. Income		
2 West H2A	1.21	12.36	134 0	H2A-0.020	H42 0	AD 10012	-	
1 Mark Hat	7.00	J11.52		H2A10	10013	143 6	ALE	-
2 West H40	-		H40 10	H30/0	H202-0	HAR IN	ALLO	
Street Race Marth	10	30 30	Helly Jacob	1.0430	10042-10	145-90	1944-10	
1 Sterm Bace B		Zerrebre base	8 0.00	21 PH do	012+14			
7 Etrong Haco R	10	Creme hazal	0 0	Dri+0	01240			
1 West Rase R La ar	10	II nume have	B (a	BHalanna	01240			
2 West Bare B	-	Hummir havel	B	814-10				
1 WeakBarek		12 mole basel	8 0	BHA O	88/24 50			
2WeekBase B		(2 poste basel	R lo	Bitelo	61124			
Choncere 18	1 de	te born start	a hi	and the	erner ar			
6	Press for c	alculating	pH = 7.895		Zero position			
Furth many same		internet i		Use t	he Scroller to see I	the endconcent	trations	
Linn message	J			End	Iconcentrations			
Strong HA				A- 0	1			
1. Stong HDA				HA- o	47. 0			
2. Strong H2A				HA- O	42.0	-1		
1. Weak HA			HA O	A- 0	- C - C - C - C - C - C - C - C - C - C	-40		
2. Weak HA			HA 0	A- 0	-			
1. Weak H2A			H24 0	HA- 0	42- 0	-		
2. Weak H2A			H2A 0	HA O	A2 10	-		
1. Weak H3A			H3A 9.846-09	H2A- 5.486-03	HA2- 2.658-0	A3- 9.1	08-07	
2. Weak H3A			H3A 3.32E 02	H2A- 1,47E 03	HA2- 1.15E 0	2 A3 2.7	48-06	
1. Weak H4A			H4A lo	H3A- lo	H2A2- 0	HA3- Io	A4	0
2. Weak H4A			H4AL 0	H3A- 0	H2A2- 0	HA3- 0	A4-	0
Strong Base MeOH				Met 2.105-03	1			
1. Strong Base B	(2-protic l	base)		8H+ 0	BH2+ 0	- 2		
2. Strong Base B	(2-protic t	(ase)		BH+ 0	8H2+ 0	-		
1. Weak Base B	(1-protic t	base)	B 1.045-03	BH+ 2.30E-02	10 m			
2. Weak Base B	(1-protic)	uase)	6 0	BH+ 0	10			
1. Weak Base B	(2-protic t	(9360)	в 0	BH+ 0	BH2+ 0	- 2		
2. Weak Dase D	(2-protic	base)	D 0	011+ 0	DH2+ 0			
and the second				10 C				
Programming: Stig 3	ohansson 8	ladhusvägen 1	16 37010 Brakn	e-Hoby Sweden	; 0046 457 80	1039; stig.	johansson@	velocitybredband.se

A very useful program is CurTiPot by Ivano Gutz, Universidad de São Paulo, Brazil: <u>http://www2.iq.usp.br/docente/gutz/Curtipot_.html</u>

It is a powerful and very versatile program that performs pH and paH calculations, and also titration curves, alpha plots, etc. It provides:

• pH calculation of any aqueous solution of acids, bases and salts, including buffers, zwitterionic amino acids, from single component to complex mixtures (30 or more species in equilibrium)

• Buffer capacity (buffer index, buffer strength), ionic strength, fractional distribution, medium charge of H_iB – to find the Isoelectric Point of amino acids –, activities and apparent dissociation constants of all species at equilibrium.

Vul 111	00	The core of		onnanacio	n or oar r	~	read instruc	tions 🛛 🖳	Load phas	price of the doi	
Titrand (sa	mple) and tit	rant (standa	rd) composit	ion (concenti	rations in mo	I/L)			of these H _i B>	EDTA	Phosphoric acid
Titrand Species	EDTA	Phosphoric acid	L-Glutamic acid	Acetic acid	Ammonia	нсі	Carbonic acid		Acid / Base	EDTA	Phosphoric acid
(日)									Charge of B	-4	-3
[HB]									pKa ₁	0,000	2,148
[H ₂ B]									pKa ₂	1,500	7,199
[H ₃ B]		0,05							pKa ₃	2,000	12,350
[H₄B]									pKa ₄	2,680	
[H₅B]									рКа ₅	6,110	
[H ₆ B]								ΣΣ	рКа _б	10,170	
Σ[H _i B]	0	0,05	0	0	0	0	0	5,000E-02	pKw	13,997	
Σ[H]	0	0,15	0	0	0	0	0	1,500E-01			
Titrant	Strong ACID	Strong BASE	Carbonic ac.		Volumes of	f titrand and tit	rant (in mL)				
(日)		0,1			Titrand	Water	Sum				en antes a company a service
[HB]					Dispensed	added	(initial vol.)			Alter and the second	
[H₂B]				ΣΣ	20	0	20,00	Dispersion	simulation	Titration spee	d
∑[H;B]	0	0,1	0	1,00E-01	Titrant max.	N° of titrant	additions	S pH=	0,000	Slower	▲ 0
Σ[H]	0	0	0	0,00E+00	50,00	50		S Vol=	0,000	Faster	 delay (s)

Analytical Chemistry: A Literary Approach

Charles A. Lucy Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; charles.lucy@ualberta.ca

JChemEd.chem.wisc.edu · Vol. 77 No. 4 April 2000 · Journal of Chemical Education 459

Biblical and Historic Analytical Chemistry

Analytical Chemistry in Classical Mysteries

Modern Analytical Techniques in Best Sellers

Analytical Chemistry in Science Fiction

ac educator

Using Humor To Teach

The right type of humor can help students relate to instructors and material.

Charles A. Lucy

342 A ANALYTICAL CHEMISTRY JUNE 1, 2005

University of Alberta (Canada) Does humor enhance learning? What kinds of humor work?

"Although there is evidence humor works, it is merely a tool...

Making eye contact, calling students by name, moving about the classroom are also effective...

... if humor does not come naturally, it should not be forced.

Teaching Social Responsibility in Analytical Chemistry M. Valcárcel, G. D. Christian, and R. Lucena, *Anal. Chem.* 2013, **85**, 6152–6161

Concept of Social Responsibility

Corporate Social Responsibility:

4.- Carroll, A.B. *Business Society*, **1999**, 38, 268-295.
5.-Lindgreen, A.; Swaen, V. Guest Editors of the especial issue on CSR, *J. Management.Rew.*,**2010**, 12, 1-76.
International Standards:
6.- ISO 2600:2010 *Guidance on Social Responsibility*. **2010**, ISO, Genève.

7.- EFQM framework on Social Responsibility

http://www.efqm.org/en/PdfResources/FrameworkCSR.pdf.

8.- *Global Reporting Initiative (GRI*) https://www.globalreporting.org/ Pages/ default.aspx.

9.-SA 8000:2008 standard on Social Accountability. Social Accountability International, 2008 http://www.sa-intl.org/.

10.-United Nations Global Compact 2012, http://www.unglobalcompact.org/.

11.- **OECD guidelines** for multinational enterprises, **2001** http://www.oecd.org/ investment/guidelinesformultinationalenterprises/1903291.pdf

12.-*Organization Internationale du Travail* approach to SR, **2009** http://www.ilo.org/empent/Informationresources/WCMS_101253/lang--fr/index.htm.

Definition of SRAC

SRAC can be defined for the chemical information generated as:

- •The awareness of the impact in societal areas (health, agrifood, industry, etc.),
- •and **on the environment**, of the (sustainably) produced chemical knowledge derived from the analysis of natural and artificial objects/samples,
- •and its **correct transmission** to circumvent misunderstandings, false expectations and non-justified alarms.
- •It is related to the **ethical principles of the people involved** in Analytical Chemistry activities (technicians, analysts/researchers and managers), as well as the recipients of the analytical knowledge.

Figure 1. Definition of social responsibility in analytical chemistry (SRAC) based on its internal and external facets.

Internal connotation - generation of data, to obtain accurate, precise data

External connotation - transmission of data:

- What the results represent (why were they obtained?)
- How well do we know them?
- Important for the end user or for reporting to the public, perhaps by a non-expert.

Internal connotations:

This is really what we teach in the standard analytical chemistry course. Methods, tools, statistics, etc.

External connotations:

These aspects are less likely to be covered.

Internal connotations:

This is really what we teach in the standard analytical chemistry course. Methods, tools, statistics, etc.

External connotations:

These aspects are less likely to be covered.

- Analytical courses and texts now may contain a section on good laboratory practice with emphasis on validation of results
- This would be a good place to emphasize the importance of SRAC, highlighting the importance of accurate analytical information in setting of public policy.

The analyst must communicate to the requester:

- that careful consideration should be given to what is requested
- ask what the results will be used for
- and how well do they need to be known

The **case study approach** is the most promising way to make the SRAC teaching-learning process more effective.

Recommended:

Students select, present, and discuss examples

Social Responsibility in Publishing

Self-plagiarism Duplication Plagiarism Fabrication Fraud PORTAL HOME COLLECTION COMMUNITY JASDL ACTIVE LEARNING ABOUT »

The Analytical Sciences Digital Library, ASDL, collects, catalogs, links and publishes peer reviewed web-based discovery materials pertinent to innovations in curricular development and supporting technical resources in the analytical sciences. The ASDL website (www.asdlib.org) is one of several collections initially funded by NSF's National Science Digital Library (NSDL) program, and is currently supported by the Division of Analytical Chemistry of the American Chemical Society. ASDL grew out of discussions at regional and national meetings on ways to implement recommendations from NSF-sponsored workshops that evaluated teaching practices in the analytical curriculum. These recommendations can be found in the workshop report *Curricular Developments in the Analytical Sciences*, available as a pdf.

The Analytical Sciences Digital Library

Welcome to ASDL!

The ASDL is comprised of four sites: <u>Collection</u>, <u>Community</u>, <u>JASDL</u>, and <u>Active Learning</u>. We hope you will take time to explore each of these sites, and that you find materials or information that are useful in your practice of the analytical sciences. If you find a broken link or other problem, or if you have suggestions to make ASDL better, please <u>contact us</u>. Thanks!

ASDL Associate Editors

ASDL's associate editors are the key players in the **peer-review process**.

•Editors take into consideration the reviews that are submitted about each site, then make a determination about accepting the site into the collection.

•At that time the site is annotated and categorized.

Anaytical Sciences Digital Library www.asdlib.org

ASDL-Analytical	Sciences Digital Library	- Windows Intern	et Explorer						E C	×
00 · 10	:://www.asdib.org/						🖌 🗟 🚧 🗙 📴 ang		٩	
Ele Edit Yew Fe	workes <u>T</u> ools <u>Help</u>									
🙀 Favorites 🛛 🎪 🕻	🕽 Webpage has expired 🚺	Suggested Ster. • [🔓 Free Hotmail 🙍	Veb Size Gallery •						
ASDE-Analytical Scie	nces Digital Library							🙆 • 🖾 👘	📑 🖶 + Page + Safety + Tools + 👔	1-
ASD Home At	L Analytica	l Sciences D	igital Libra Asso	ry	How	to Contribute	Site Map	SEARCH Contact	the ASDL collection GO Review System	4
The Analytical Sc	iences Digital Library	collects, catalog	s, annotates and	links peer-revi	ewed web-base	ed educational resource:	and publishes the	Visit our Par	tners	
online journal, JA Tec	sol. hniques	Applic	ations	Resou For	rces by mat	Teaching <u>Resources</u>	JASDL	The ACS Divisio The Society for Screening (SLA	on of Analytical Chemistry Laboratory Automation and S)-LabAutopedia	
chemometrics electrochemistry instrumentation mass spectrometry NMR and EPR	<u>separations</u> <u>spectroscopy</u> surfaces/nanomaterials	aopisation databases bioanalytical environmental forensis quantitative analysis	lab manuals research practices scientist's guidelines	animations entexts exercises lab experiments tutorials	<u>videos</u> <u>virtual labs</u> powerpoints	active learning case studies cooperative learning problem/inguity-based learning reference inks/databases	Courseware Labvare Educational Practices Undergraduate Research			
ASDL posters Pro Congratulations travel costs to all Analytical Chem University, can b published by McC ASDL Active Lea eventual inclusion	esters are accepted any to Christa Snyder, Witt tend LabAutomation 20 istry 2.0 is now availal e accessed as a JASDL araw-Hill in 1999. The d mining Materials . Thes in in JASDL. ASDL is proud to be p ASDL collection, online Chemistry Division of	l ytime. Posters wi enberg University 011 conference in ble through JASD courseware item lownloadable PDF re materials have materials have artnered with the artnered with the artnered stu ACS.	I be online at AS /, the winner of t Palm Springs, C L. This free electri . The book is a co files are extens been developed e Analytical Cher ident poster ses	DL for one year of the 2010 ASDL-AI A, January 29-Fe ronic analytical cl ompletely update ively hyperlinked I with funding fro with funding fro mistry Division of sions while enco	and archived af LA Young Scient bruary 2, 2011 hemistry textbo d revision of H l both within th m the NSF-CCL of ACS. By joining uraging analytic	l terward. Authors retain o tist Poster Award. Christii ok authored by David Ha arvey's text <i>Analytical Che</i> e text and to external sit I program and are curren Ing forces we work to crea cal scientists to become a	opyright, na received \$500 and nvey, DePauw mistry, originally as, tly under review for tly under review for te enthusiasm for the tetive in the Analytical	News Currently then ASDL Profe Meet colleagu Photo galle Meet the ASD ALA 2010 Pittcon 2010 Pittcon 2009 Other Links NSDL Chemical Edu Environmenta Virtual Inorua Resource LabAutopedia Network	e are no news items. ssionals Directory tes and add your entry. Fy L People! cation Digital Library It Resources Library mic Pedagogical Electronic - The SLAS Knowledge	
Done								Featured Si	te	M

Q

Q

echniques »	ormat »	Applications »	Teaching Resources »
-------------	---------	----------------	----------------------

BROWSE: HOME IN RESOURCES BY FORMATING IN ANIMATIONS IN HPLC SIMULATOR.ORG – FREE, OPENSOURCE HPLC SIMULATOR PROJECT

HPLC Simulator.org – free, opensource HPLC simulator project

Want to see what happens in LC, but there's not an HPLC available for your use? This simulator shows what the important parameters are and lets you see the effect of changing those parameters on realistic separations.

The website is available here .

Leave a Reply

SPOTLIGHT	LATEST	TAGS	
Analytical Ele	ctrochemist	try: Basic co	oncepts
Introduction to Video Lecture	o Atomic Fo	rce Microsc	opy (AFM
ELISA Animat	ed Virtual L	aboratory	
Forensic Scie	nce Labora	atory	
Desire of hild	D		

ACS partners with ASDL

Overview

Welcome to hplcsimulator.org - a free, online resource for High-Performance Liquid Chromatography (HPLC) simulation, education, and more.

New HPLC Simulator for Android

Now you can run HPLC Simulator from your phone or tablet! We packed nearly all of the functionality of the full simulator into an app that fits on your phone.

You'll be the life of the party when you whip out your HPLC Simulator for Android and use it to teach your friends about gradient delay. Explain the general elution problem to your kids while you eat breakfast! Demonstrate the advantages and disadvantages of small particle size while you ride the bus! Take HPLC with you everywhere you go.

Seriously, though - it's incredibly useful.

HPLC Simulator

Run HPLC Simulator

Click on the following link to run HPLC Simulator:

Launch HPLC Simulator

After clicking on the above link, a window will ask you to either open or save "hplcsimulatorapp.jnlp". Make sure "Open with" and "Java(TM) Web Start Launcher" are selected and then click "Ok".

Note: Some browsers may open the contents of hplcsimulatorapp.jnlp instead of running it. In that case, follow the instructions below for "Running HPLC Simulator Offline".

Instructions

Online Documentation

Documentation on how to use HPLC Simulator, how values are calculated, tutorials, and other information can be found by clicking on the "Help" button at the lower-right corner of the HPLC simulator.

Some conclusions:

- •Teach students the relevance of AC in society
- Teach some history
- Teach the importance of what is reported
- Teach what questions to ask in requests for analyses
- •Teach how to get a representative & meaningful sample
- Revaluate what is taught
 - -What is actually used?
 - -Bring in industrial partners
- But don't ignore classical topics
 - Mastering equilibria is important in many disciplines
 - Laboratory experiments should teach careful techniques
- Accommodate different student learning skills
- •Utilize new technologies
- •Teach communication skills!
 - written
 - -oral

Lord Kelvin (William Thompson, 1824-1907)

"Unless our knowledge is measured in numbers, it does not amount to much"

Thank you – And happy teaching!